jadilah guru profesional untuk indonesia emas

Rabu, 30 September 2015

Realistic Mathematics Education

          A.    Konsep-Konsep Dasar Pendekatan Matematika Realistik
1.      Pengertian
Realistic mathematics education, yang diterjemahkan sebagai pendidikan matematika realistik (PMR), adalah sebuah pendekatan belajar matematika yang dikembangkan sejak tahun 1971 oleh sekelompok ahli matematika dari Freudenthal Institute, Utrecht University di Negeri Belanda. Pendekatan ini didasarkan pada anggapan Hans Freudenthal (1905 – 1990) bahwa matematika adalah kegiatan manusia. Menurut pendekatan ini, kelas matematika bukan tempat memindahkan matematika dari guru kepada siswa, melainkan tempat siswa menemukan kembali ide dan konsep matematika melalui eksplorasi masalah-masalah nyata. Di sini matematika dilihat sebagai kegiatan manusia yang bermula dari pemecahan masalah (Dolk, 2006). Karena itu, siswa tidak dipandang sebagai penerima pasif, tetapi harus diberi kesempatan untuk menemukan kembali ide dan konsep matematika di bawah bimbingan guru. Proses penemuan kembali ini dikembangkan melalui penjelajahan berbagai persoalan dunia nyata (Hadi, 2005). Di sini dunia nyata diartikan sebagai segala sesuatu yang berada di luar matematika, seperti kehidupan sehari-hari, lingkungan sekitar, bahkan mata pelajaran lain pun dapat dianggap sebagai dunia nyata. Dunia nyata digunakan sebagai titik awal pembelajaran matematika. Untuk menekankan bahwa proses lebih penting daripada hasil, dalam pendekatan matematika realistik digunakan istilah matematisasi, yaitu proses mematematikakan dunia nyata. Proses ini digambarkan oleh de Lange (dalam Hadi, 2005) sebagai lingkaran yang tak berujung (lihat Gambar 1). Selanjutnya, oleh Treffers (dalam van den Heuvel-Panhuisen, 1996) matematisasi dibedakan menjadi dua, yaitu matematisasi horizontal dan matematisasi vertikal. Kedua proses ini digambarkan oleh Gravenmeijer (dalam Hadi, 2005) sebagai proses penemuan kembali.
Matematisasi horizontal adalah proses penyelesaian soal-soal kontekstual dari dunia nyata. Dalam matematika horizontal, siswa mencoba menyelesaikan soal-soal dari dunia nyata dengan cara mereka sendiri, dan menggunakan bahasa dan simbol mereka sendiri. Sedangkan matematisasi vertikal adalah proses formalisasi konsep matematika. Dalam matematisasi vertikal, siswa mencoba menyusun prosedur umum yang dapat digunakan untuk menyelesaikan soal-soal sejenis secara langung tanpa bantuan konteks. Dalam istilah Freudenthal (dalam van den Heuvel-Panhuisen, 1996) matematisasi horizontal berarti bergerak dari dunia nyata ke dalam dunia simbol, sedangkan matematisasi vertikal berarti bergerak di dalam dunia simbol itu sendiri. Dengan kata lain, menghasilkan konsep, prinsip, atau model matematika dari masalah kontekstual sehari-hari termasuk matematisasi horizontal, sedangkan menghasilkan konsep, prinsip, atau model matematika dari matematika sendiri termasuk matematisasi vertikal.
2.      Konsepsi tentang Siswa
Dalam pendekatan matematika realistik, siswa dipandang sebagai individu (subjek) yang memiliki pengetahuan dan pengalaman sebagai hasil interaksinya dengan lingkungan. Selanjutnya, dalam pendekatan ini diyakini pula bahwa siswa memiliki potensi untuk mengembangkan sendiri pengetahuannya, dan bila diberi kesempatan mereka dapat mengembangkan pengetahuan dan pemahaman mereka tentang matematika. Melalui eksplorasi berbagai masalah, baik masalah kehidupan sehar-hari maupun masalah matematika, siswa dapat merekonstruksi kembali temuan-temuan dalam bidang matematika. Jadi, berdasarkan pemikiran ini konsepsi siswa dalam pendekatan ini adalah sebagai berikut (Hadi, 2005):
a.       Siswa memiliki seperangkat konsep alternatif tentang ide-ide matematika yang mempengaruhi belajar selanjutnya;
b.      Siswa memperoleh pengetahuan baru dengan membentuk pengetahuan itu untuk dirinya sendiri;
c.       Siswa membentuk pengetahuan melalui proses perubahan yang meliputi penambahan, kreasi, modifikasi, penghalusan, penyusunan kembali, dan penolakan
d.      Siswa membangun pengetahuan baru untuk dirinya sendiri dari beragam pengalaman yang dimilikinya
e.       Siswa memiliki kemampuan untuk memahami dan mengerjakan matematika tanpa memandang ras, budaya, dan jenis kelamin.
3.      Peran Guru
Pemikiran dan konsepsi di atas menggeser peran guru dalam kelas. Kalau dalam pendekatan tradisional guru dianggap sebagai pemegang otoritas yang mencoba memindahkan pengetahuannya kepada siswa, maka dalam pendekatan matematika realistik ini guru dipandang sebagai fasilitator, moderator, dan evaluator yang menciptakan situasi dan menyediakan kesempatan bagi siswa untuk menemukan kembali ide dan konsep matematika dengan cara mereka sendiri. Oleh karena itu, guru harus mampu menciptakan dan mengembangkan pengalaman belajar yang mendorong siswa untuk memiliki aktivitas baik untuk dirinya sendiri maupun bersama siswa lain (interaktivitas). Akibatnya guru tidak boleh hanya terpaku pada materi dalam kurikulum dan buku teks, tetapi harus terus menerus memutakhirkan materi dengan masalah-masalah baru dan menantang.
Jadi, peran guru dalam pendekatan matematika realistik dapat dirumuskan sebagai berikut:
a.       Guru harus berperan sebagai fasilitator belajar;
b.      Guru harus mampu membangun pengajaran yang interaktif;
c.       Guru harus memberi kesempatan kepada siswa untuk aktif memberi sumbangan pada proses belajarnya;
d.      Guru harus secara aktif membantu siswa dalam menafsirkan masalah-masalah dari dunia nyata; dan
e.       Guru harus secara aktif mengaitkan kurikulum matematika dengan dunia nyata, baik fisik maupun sosial.
4.      Katakteristik
Beberapa karakteristik pendekatan matematika realistik menurut Suryanto (2007) adalah sebagai berikut:
a.       Masalah kontekstual yang realistik (realistic contextual problems) digunakan untuk memperkenalkan ide dan konsep matematika kepada siswa.
b.      Siswa menemukan kembali ide, konsep, dan prinsip, atau model matematika melalui pemecahan masalah kontekstual yang realistik dengan bantuan guru atau temannya.
c.       Siswa diarahkan untuk mendiskusikan penyelesaian terhadap masalah yang mereka temukan (yang biasanya ada yang berbeda, baik cara menemukannya maupun hasilnya).
d.      Siswa merefleksikan (memikirkan kembali) apa yang telah dikerjakan dan apa yang telah dihasilkan; baik hasil kerja mandiri maupun hasil diskusi.
e.       Siswa dibantu untuk mengaitkan beberapa isi pelajaran matematika yang memang ada hubungannya.
f.       Siswa diajak mengembangkan, memperluas, atau meningkatkan hasil-hasil dari pekerjaannya agar menemukan konsep atau prinsip matematika yang lebih rumit.
g.      Matematika dianggap sebagai kegiatan bukan sebagai produk jadi atau hasil yang siap pakai. Mempelajari matematika sebagai kegiatan paling cocok dilakukan melalui learning by doing (belajar dengan mengerjakan).
Beberapa hal yang perlu dicatat dari karakteristik pendekatan matematika realistik di atas adalah bahwa pembelajaran matematika realistik:
a.       Termasuk “cara belajar siswa aktif” karena pembelajaran matematika dilakukan melalui ”belajar dengan mengerjakan;.”
b.      termasuk pembelajaran yang berpusat pada siswa karena mereka memecahkan masalah dari dunia mereka sesuai dengan potensi mereka, sedangkan guru hanya berperan sebagai fasilitator;
c.       termasuk pembelajaran dengan penemuan terbimbing karena siswa dikondisikan untuk menemukan atau menemukan kembali konsep dan prinsip matematika;
d.      termasuk pembelajaran kontekstual karena titik awal pembelajaran matematika adalah masalah kontekstual, yaitu masalah yang diambil dari dunia siswa;
e.       termasuk pembelajaran konstruktivisme karena siswa diarahkan untuk menemukan sendiri pengetahuan matematika mereka dengan memecahkan masalah dan diskusi.
Dua catatan terakhir di atas mengisyaratkan bahwa secara prinsip pendekatan matematika realistik merupakan gabungan pendekatan konstruktivisme dan kontekstual dalam arti memberi kesempatan kepada siswa untuk membentuk (mengkonstruksi) sendiri pemahaman mereka tentang ide dan konsep matematika, melalui penyelesaian masalah dunia nyata (kontekstual). Untuk lebih jelasnya, berikut ini disajikan secara singkat teori dan prinsip dasar pendekatan konstruktivisme dan kontekstual.
Ø  Pendekatan Konstruktivisme
Konstruktivisme adalah suatu pendekatan belajar menurut teori belajar Piaget. Menurut Piaget, manusia memiliki struktur kognitif yang berupa skemata, yaitu kotak-kotak informasi (skema) yang berbeda-beda. Setiap pengalaman akan dihubungkan dengan kotak-kotak informasi ini. Struktur kognitif seseorang berkembang melalui dua cara, yaitu asimilasi dan akomodasi, sebagai hasil interaksinya dengan lingkungan. Asimilasi adalah proses memasukkan pengalaman baru secara langsung ke dalam kotak informasi yang sudah ada. Ini terjadi bila pengalaman baru itu sama dengan isi kotak informasi yang tersimpan dalam struktur kognitif seseorang. Akomodasi adalah proses memasukkan pengalaman baru secara tidak langsung ke dalam kotak informasi yang sudah ada. Ini terjadi bila pengalaman baru tidak sesuai dengan informasi yang sudah ada, dalam hal ini informasi yang sudah tersimpan dalam struktur kognitif seseroang akan mengalami modifikasi. Sebagai contoh, seorang anak yang melihat macan untuk pertama kali mungkin akan menganggapnya sebagai seekor kucing besar karena dalam struktur kongnitif anak itu sudah ada kotak informasi mengenai kucing dan dia berusaha memasukkan macan ke dalam kotak informasi kucing. Bila anak itu sudah mulai mengerti bahwa macan bukan kucing, maka dia akan membentuk kotak informasi baru mengenai macan atau memodifikasi kotak informasi kucing yang ada di dalam struktur kognitifnya. Dengan cara inilah struktur kognitif seseorang berkembang semakin lengkap dan rinci sesuai dengan pengalamannya.
Karakteristik utama belajar menurut pendekatan konstruktivisme adalah sebagai berikut (Mustaji dan Sugiarso, 2005).
1)      Belajar adalah proses aktif dan terkontrol yang maknanya dikonstruksi oleh masing-masing individu;
2)      Belajar adalah aktivitas sosial yang ditemukan dalam kegiatan bersama dan memiliki sudut pandang yang berbeda;
3)      Belajar melekat dalam pembangunan suatu artifak yang dilakukan dengan saling berbagi dan dikritik oleh teman sebaya.
Berdasarkan karakteristik belajar di atas, beberapa prinsip pembelajaran menurut pendekatan konstruktivisme adalah sebagai berikut:
a)      Menciptakan lingkungan dunia nyata dengan menggunakan konteks yang relevan;
b)      Menekankan pendekatan realistik guna memecahkan masalah dunia nyata;
c)      Analisis strategi yang dipakai untuk memecahkan masalah dilakukan oleh siswa;
d)     Tujuan pembelajaran tidak dipaksakan tetapi dinegosiasikan bersama;
e)      Menekankan antar hubungan konseptual dan menyediakan perspektif ganda mengenai isi;
f)       Evaluasi harus merupakan alat analisis diri sendiri;
g)      Menyediakan alat dan lingkungan yang membantu siswa menginterpretasikan perspektif ganda tentang dunia; dan
h)      Belajar harus dikontrol secara internal oleh siswa sendiri dan dimediasi oleh guru.
Adapun prinsip-prinsip konstruktivisme yang banyak digunakan dalam pembelajaran matematika antara lain (Hadi, 2005):
a)      Pengetahuan dibangun sendiri oleh siswa, baik secara personal maupun sosial;
b)      Pengetahuan tidak dapat dipindahkan dari guru ke siswa;
c)      Pengetahuan diperoleh siswa hanya dengan keaktifan sendiri;
d)    Siswa terus aktif mengkonstruksi pengetahuannya sehingga konsep yang dimilikinya menjadi semakin rinci, lengkap, dan ilmiah;
e)      Guru hanya menyediakan sarana dan situasi agar proses konstruksi berjalan mulus.
  
Ø  Pendekatan Kontekstual
Pendekatan kontekstual didasarkan pada keyakinan bahwa seseorang akan tertarik untuk mempelajari sesuatu apabila ia melihat makna dari apa yang dipelajarinya itu. Makna muncul dari hubungan antara isi dan konteksnya. Di sini konteks diartikan sebagai situasi atau keadaan yang memberi makna kepada suatu objek. Misalnya, dalam konteks matematika, kata ganjil berarti bilangan bulat yang tidak habis dibagi dua, sedangkan dalam konteks bahasa Indonesia kata ini bisa berarti aneh atau janggal. Jadi sebuah kata atau istilah bisa mempunyai makna yang berbeda sesuai dengan konteksnya. Dalam skala yang lebih besar, misalnya, konteks Sumatera tidak sama dengan konteks Sulawesi karena kebudayaan, adat istiadat, dan kebiasaan hidup di Sumatera tidak sama denga kebudayaan, adat istiadat, dan kebiasaan hidup di Sulawesi. Demikian pula konteks Jawa tidak bisa dibawa ke Kalimantan. Tugas utama guru menurut pendekatan kontekstual adalah menyediakan konteks yang memberi makna pada isi sehingga melalui makna tersebut siswa dapat menghubungkan isi pelajaran dengan pengetahuan dan pengalamannya. Tentu saja konteks yang dipilih harus sesuai dengan kebudayaan, adat istiadat, dan kebiasaan hidup di tempat siswa tinggal.
Pendekatan kontekstual meyakini beberapa hal (Johnson dalam Hadi, 2005), antara lain
a)      Siswa memahami dan mengingat apa yang mereka pelajari bila mereka menemukan makna dari pelajaran mereka;
b)      Dengan pembelajaran kontekstual siswa mampu menghubungkan pelajaran di sekolah dengan konteks nyata dalam kehidupan sehari-hari;
c)      Pembelajaran kontekstual memperluas konteks pribadi siswa dalam artian memacu siswa untuk membuat hubungan-hubungan yang baru sehingga menemukan makna yang baru.
Jadi, pada dasarnya pendekatan konstekstual adalah sebuah pendekatan belajar yang membantu siswa melihat makna dari pelajaran mereka di sekolah melalui hubungan antara pelajaran tersebut dengan konteks kehidupan sehari-hari, baik secara pribadi, sosial, maupun budaya. Untuk mencapai hal ini, pendekatan kontekstual memiliki delapan prinsip (Hadi, 2005), yaitu:
·         hubungan yang bermakna,
·         pekerjaan yang berarti,
·         pengaturan belajar sendiri,
·         kolaborasi,
·         berpikir kritis dan kreatif
·         pendewasaan individu,
·         pencapaian standar yang tinggi
·         penilaian autentik
Peran guru menurut pendekatan kontekstual adalah sebagai berikut (lihat Nurhadi et al., 2005):
a)      Mengkaji konsep yang harus dipelajari siswa
b)      Memahami pengalaman hidup siswa
c)      Mempelajari lingkungan sekolah dan tempat tinggal siswa
d)     Merancang pembelajaran yang mengaitkan konsep dengan pengalaman siswa
e)      Membantu siswa mengaitkan konsep dengan pengalaman mereka
f)       Mendorong siswa membangun kesimpulan yang merupakan pemahaman mereka tentang konsep yang sedang dipelajari
Ada tujuh komponen utama dalam pendekatan kontekstual, yaitu (Nurhadi et al, 2005):
1)      Konstruktivisme
Dalam komponen ini siswa memperoleh pemahaman yang mendalam melalui pengalaman belajar yang bermakna dengan cara membangun sendiri pengetahuannya sedikit demi sedikit dari konteks yang terbatas.
2)      Penemuan
Di sini siswa mengembangkan pemahaman konsep melalui siklus mengamati, bertanya, menganalisis, dan merumuskan teori baik secara individu maupun berkelompok. Keterampilan berpikir kritis juga dikembangkan di sini.
3)      Bertanya
Dalam komponen ini siswa didorong untuk mengetahui sesuatu dan memperoleh informasi. Di samping itu, kemampuan berpikir kritis siswa dapat dilatih dan sekaligus dinilai.
4)      Masyarakat Belajar
Di sini siswa dilatih untuk berbicara dan berbagi pengalaman serta bekerjasama dengan orang lain untuk menciptakan pembelajaran yang lebih baik.
5)      Pemodelan
Di sini siswa diberi model (contoh) tentang apa yang harus mereka kerjakan. Pemodelan dapat berupa demonstrasi dan pemberian contoh.
6)      Penilaian Autentik (Sebenarnya)
Dengan komponen ini proses dan hasil kedua-duanya dapat diukur.
7)      Refleksi
Komponen ini merupakan komponen yang penting karena memberi kesempatan untuk melihat kembali apa yang sudah dikerjakan termasuk kemajuan belajar dan hambatan yang ditemui.

5.      Evaluasi
Evaluasi merupakan kegiatan yang penting dalam sebuah proses pembelajaran. Guru memerlukan informasi tentang keberhasilan proses pembelajarannya. Orang tua siswa juga memerlukan informasi tentang kemajuan atau hasil belajar anaknya dalam matematika. Selain itu, siswa sendiri berhak mengetahui apa yang mereka peroleh dari pembelajaran matematika. Informasi yang diperoleh dari kegiatan evaluasi dapat digunakan sebagai umpan balik bagi semua pihak yang terlibat dalam proses pembelajaran matematika di sekolah. Selanjutnya, Suryanto (2007) memberikan beberapa catatan mengenai evaluasi pada pembelajaran matematika realistic.
a)      Observasi (pengamatan)
Pada pembelajaran matematika realistik, evaluasi tidak hanya diperlukan untuk mengukur pencapaian kompetensi tertentu, tetapi juga diperlukan untuk memperoleh gambaran tentang perkembangan siswa, yang meliputi sikap mereka terhadap pelajaran matematika, taraf kemampuan memecahkan masalah, kekeliruan yang mereka lakukan dalam memecahkan masalah, cara mereka bekerja sama dengan teman sekelas, kebutuhan akan bantuan dalam belajar matematika, motivasi belajar, dan sebagainya. Karena itu, salah satu cara evaluasi yang perlu ditekankan dalam pendekatan ini adalah observasi (pengamatan).
b)      Evaluasi kontinu
Evaluasi pada pembelajaran matematika realistik lebih menekankan evaluasi proses belajar atau proses pembelajaran. Jadi, observasi sebaiknya dilakukan secara terus menerus.
c)      Peranan guru dalam evaluasi
Peranan guru dalam evaluasi meliputi kegiatan melakukan observasi, mendiagnosis kesulitan siswa, mengembangkan tes dan instrumen lain, melaksanakan tes, dan menggunakan instrumen lain.
d)     Pendekatan holistik
Evaluasi pada pembelajaran matematika realistik tidak hanya untuk mengukur pencapaian kompetensi seorang siswa, tetapi juga untuk memperoleh gambar yang selengkap-lengkapnya mengenai siswa tersebut. Karena itu, evaluasi harus bersifat holistik (menyeluruh).
e)      Format soal terbuka
Evalasi harus dapat mengungkap kegiatan siswa (menemukan, matematisasi, dan sebagainya). Karena itu, jika tes akan digunakan dalam evaluasi, maka tes yang cocok adalah tes yang memuat soal terbuka, yaitu soal-soal yang dapat dikerjakan dengan beberapa cara atau yang mempunyai beberapa kemungkinan jawaban tergantung pada tambahan informasi yang boleh dicari oleh siswa, atau soal-soal yang memerlukan kecakapan siswa untuk mengkomunikasikan penyelesaiannya.
f)       Masalah terapan yang sesungguhnya
Evaluasi pada pembelajaran matematika realistik perlu memuat masalah terapan yang sesungguhnya dengan konteks non-matematis, yang memungkinkan siswa melalukan matematisasi horizontal dan dapat membuat siswa merasa bahwa masalah itu memang perlu diselesaikan, bukan sekedar masalah verbal untuk melatih siswa menggunakan rumus.
Contoh: Untuk mengikuti perlombaan matematika, siswa harus sudah siap di depan kantor Dinas Pendidikan pada hari Senin pukul 08.00. Anisa tinggal di Perumahan Damai, Jalan Merpati nomor 10. Dengan kendaraan apa saja Anisa dapat datang ke tempat perlombaan dan pukul berapa dia harus berangkat?

          B.     Implementasi Pendekatan Matematika Realistik
1.      Karakteristik Pendekatan Matematika Realistik
Di sini menggunakan 5 (lima) karakteristik utama pendekatan matematika realistik sebagai pedoman dalam merancang pembelajaran matematika. Kelima karakteristik itu adalah sebagai berikut:
a.       Pembelajaran harus dimulai dari masalah kontekstual yang diambil dari dunia nyata. Masalah yang digunakan sebagai titik awal pembelajaran harus nyata bagi siswa agar mereka dapat langsung terlibat dalam situasi yang sesuai dengan pengalaman mereka.
b.      Dunia abstak dan nyata harus dijembatani oleh model. Model harus sesuai dengan tingkat abstraksi yang harus dipelajari siswa. Di sini model dapat berupa keadaan atau situasi nyata dalam kehidupan siswa, seperti cerita-cerita lokal atau bangunan-bangunan yang ada di tempat tinggal siswa. Model dapat pula berupa alat peraga yang dibuat dari bahan-bahan yang juga ada di sekitar siswa.
c.       Siswa dapat menggunakan strategi, bahasa, atau simbol mereka sendiri dalam proses mematematikakan dunia mereka. Artinya, siswa memiliki kebebasan untuk mengekspresikan hasil kerja mereka dalam menyelesaikan masalah nyata yang diberikan oleh guru.
d.      Proses pembelajaran harus interaktif. Interaksi baik antara guru dan siswa maupun antara siswa dengan siswa merupakan elemen yang penting dalam pembelajaran matematika. Di sini siswa dapat berdiskusi dan bekerjasama dengan siswa lain, bertanya dan menanggapi pertanyaan, serta mengevaluasi pekerjaan mereka.
e.       Hubungan di antara bagian-bagian dalam matematika, dengan disiplin ilmu lain, dan dengan masalah dari dunia nyata diperlukan sebagai satu kesatuan yang saling kait mengait dalam penyelesaian masalah.
Sekarang mari kita membahas karakteristik di atas untuk melihat bagaimana seharusnya pembelajaran matematika dirancang. Pertama, pembelajaran matematika harus realistik. Dalam bahasa Belanda kata realiseren berarti membayangkan. Jadi, pembelajaran matematika realistik dapat diartikan sebagai pembelajaran matematika yang dapat dibayangkan oleh siswa. Karena itu, pembelajaran matematika harus dimulai dengan masalah yang diambil dari dunia nyata supaya siswa dapat membayangkannya. Masalah yang dipilih harus disesuaikan dengan konteks kehidupan siswa. Artinya, masalah yang dipilih harus dikenal baik oleh siswa. Contoh, dalam konteks makanan khas suatu daerah, pempek hanya cocok digunakan di Sumatera Selatan, tetapi tidak cocok untuk digunakan di Papua. Dalam konteks bangunan untuk pembelajaran bentuk-bentuk geometri, misalnya, Monas atau Jembatan Ampera tidak cocok untuk digunakan di Kalimantan, karena siswa tidak dapat membayangkan bangunan-bangunan tersebut. Ini adalah karanteristik kedua. Selanjutnya, dalam pembelajaran matematika realistik siswa diberi sebuah masalah dari dunia nyata dan diberi waktu untuk berusaha menyelesaikan masalah tersebut dengan cara dan bahasa serta simbol mereka sendiri. Misalnya, pada awal pembelajaran guru bercerita bahwa dia memiliki dua potong roti dan akan membagi kedua potong roti itu kepada tiga orang anaknya. Kemudian guru itu bertanya kepada siswa bagaimana cara memotong roti tersebut supaya ketiga anaknya mendapat bagian yang sama banyak. Selanjutnya siswa diberi waktu untuk menyelesaikan masalah itu dengan cara mereka sendiri, seperti membuat gambar atau mencari sesuatu yang menyerupai roti. Tentu saja pembelajaran ini akan lebih menarik bila guru tadi benar-benar membawa dua potong roti ke dalam kelas. Karakteristik selanjutnya adalah sifat interaktif. Setelah diberi kesempatan menyelesaikan masalah dengan cara mereka sendiri, siswa diminta menceritakan cara yang digunakannya untuk menyelesaikan masalah tersebut kepada teman-teman sekelasnya. Siswa lain diminta memberi tanggapan mengenai cara yang disajikan temannya. Dengan cara seperti ini siswa dapat berinteraksi dengan sesamanya, bertukar informasi dan pengalaman, serta berlatih mengkomunikasikan hasil kerjanya kepada orang lain. Akhirnya, siswa dibimbing untuk menemukan aturan umum untuk menyelesaikan masalah sejenis. Di sinilah siswa dapat melihat hubungan matematika dengan kehidupan sehari-hari atau dengan pelajaran lain. Inilah yang membuat pembelajaran matematika lebih bermakna.
2.      Langkah-Langkah Pembelajaran Matematika Realistik
Uraian di atas jelas menggambarkan langkah-langkah pembelajaran matematika realistik. Secara umum langkah-langkah pembelajaran matematika realistik dapat dijelaskan sebagai berikut (lihat Zulkardi, 2002):
1)      Persiapan
Selain menyiapkan masalah kontekstual, guru harus benar-benar memahami masalah dan memiliki berbagai macam strategi yang mungkin akan ditempuh siswa dalam menyelesaikannya.
2)      Pembukaan
Pada bagian ini siswa diperkenalkan dengan strategi pembelajaran yang dipakai dan diperkenalkan kepada masalah dari dunia nyata. Kemudian siswa diminta untuk memecahkan masalah tersebut dengan cara mereka sendiri.
3)      Proses pembelajaran
Siswa mencoba berbagai strategi untuk menyelesaikan masalah sesuai dengan pengalamannya, dapat dilakukan secara perorangan maupun secara kelompok. Kemudian setiap siswa atau kelompok mempresentasikan hasil kerjanya di depan siswa atau kelompok lain dan siswa atau kelompok lain memberi tanggapan terhadap hasil kerja siswa atau kelompok penyaji. Guru mengamati jalannya diskusi kelas dan memberi tanggapan sambil mengarahkan siswa untuk mendapatkan strategi terbaik serta menemukan aturan atau prinsip yang bersifat lebih umum.
4)      Penutup
Setelah mencapai kesepakatan tentang strategi terbaik melalui diskusi kelas, siswa diajak menarik kesimpulan dari pelajaran saat itu. Pada akhir pembelajaran siswa harus mengerjakan soal evaluasi dalam bentuk matematika formal.
Sekarang marilah kita perhatikan contoh bagaimana langkah-langkah ini diterapkan dalam sebuah pembelajaran matematika. Misalnya, topik yang akan diajarkan adalah bilangan pecahan. Salah satu kompetensi yang akan dicapai dalam topik ini adalah ”menjelaskan arti pecahan dan membandingkannya.” Kita dapat menggunakan kue yang berbentuk bulat dan tipis, seperti serabi, atau kertas berbentuk lingkaran yang sama besar.
·         Persiapan
Sebagai persiapan, guru mempelajari terlebih dahulu arti pecahan dan cara mengurutkannya. Setelah menetapkan masalah kontekstual yang akan dipakai untuk memulai pembelajaran, guru menyiapkan segala sesuatu yang dibutuhkan. Di sini kita akan menggunakan masalah membagi kue serabi, sehingga guru harus menyediakan beberapa lembar kertas berbentuk lingkaran yang sama besar sebagai model kue serabi. Selanjutnya guru menyiapkan skenario pembelajaran yang akan digunakan di kelas. Berbagai strategi yang mungkin akan ditempuh siswa dalam kegiatan pembelajaran sebaiknya sudah diantisipasi pada langkah ini, sehingga guru bisa mengendalikan proses pembelajaran di kelas.
·         Pembukaan
Pada awal pembelajaran, guru menceritakan kepada siswa bahwa seorang ibu ingin membagi 3 potong kue serabi kepada 4 orang anaknya sedemikian rupa sehingga setiap anak mendapat bagian yang sama. Setelah itu, guru mengelompokkan siswa ke dalam kelompok-kelompok dengan anggota masing-masing 4 orang. Setiap kelompok diberi 3 lembar kertas berbentuk lingkaran yang sama besar sebagai model kue serabi dan sebuah gunting, lalu diminta membagi 3 lembar kertas berbentuk lingkaran itu di antara mereka sehingga setiap anggota menerima bagian yang sama besar. Guru memberi waktu kepada setiap kelompok untuk memecahkan masalah tersebut dengan cara mereka sendiri. Setelah waktu yang diberikan habis, setiap kelompok diberi kesempatan untuk menyajikan cara yang mereka tempuh untuk menyelesaikan masalah, sedangkan kelompok lain memberi kritik dan saran. Kemudian siswa dikelompokkan menjadi kelompok dengan anggota masing-masing 5 orang dan diminta membagi 3 lembar kertas berbentuk lingkaran menjadi lima bagian yang sama seperti sebelumnya. Lalu siswa diminta membandingkan potongan mana yang lebih besar (3 lembar kertas berbentuk lingkaran dipotong 4 atau dipotong 5).
·         Proses pembelajaran
Pada saat pembelajaran berlangsung guru hanya memperhatikan kegiatan setiap kelompok membagi ”kue” yang diberikan dan memberi bantuan jika diperlukan. Kemudian guru memberi kesempatan kepada wakil setiap kelompok untuk menyajikan cara mereka membagi ”kue” dan kelompok lain memberi kritik dan saran. Selain itu, siswa juga diminta mendiskusikan potongan mana yang lebih besar (”kue” yang dibagi 4 atau yang dibagi 5). Guru mengarahkan siswa dalam diskusi kelas untuk membuat kesimpulan bersama tentang arti bilangan pecahan dan cara mengurutkannya.
·         Penutup
Sebagai penutup, siswa diminta mengerjakan soal dan diberi pekerjaan rumah yang berkaitan dengan materi perbandingan pecahan. Pada akhir pelajaran guru mengajak siswa bersama-sama menyimpulkan apa yang sudah mereka kerjakan dan pelajari saat itu.
3.      Peranan Alat Peraga
Tidak sedikit guru beranggapan bahwa pola pikir siswa terutama siswa sekolah dasar sama dengan pola pikir guru sehingga banyak guru menganggap bahwa apa yang dijelaskannya di depan kelas dapat dipahami dengan baik oleh siswa. Anggapan ini sebenarnya menyesatkan. Sesuai dengan teori belajar Bruner, pembelajaran matematika di sekolah dasar terutama di kelas bawah sangat memerlukan benda kongkrit yang dapat diamati dan dipegang langsung oleh siswa ketika melakukan aktivitas belajar. Karena itu, peranan alat peraga dalam pembelajaran matematika realistik tidak boleh dilupakan. Dalam hal ini alat peraga dapat menjembatani konsep abstrak matematika dengan dunia nyata. Di samping itu, alat peraga juga dapat membantu siswa menemukan strategi pemecahan masalah. Dari penggunaan alat peraga ini siswa dapat membangun sendiri pengetahuannya, memahami masalah, dan menemukan strategi pemecahan masalah.
Sebagai contoh, berikut ini disajikan pembelajaran matematika di SD Kanisius Demangan Baru Yogyakarta (Triyana, 2004). Materi yang dibahas adalah ”lebih besar dan lebih kecil” dan ”bilangan antara.” Guru memulai pelajaran dengan meminta siswa menebak bilangan rahasia yang dipikirkannya. Puluhan siswa segera mengacungkan jari berebut ingin menebak bilangan rahasia itu. Lebih dari sepuluh anak telah menjawab, namun tak satupun yang berhasil menebak bilangan rahasia sang guru. Masih ada beberapa siswa yang mencoba menjawab. Tiba-tiba ada seorang siswa menemukan ide mengajukan pertanyaan ”Apakah bilangan itu kurang dari 100?” Guru segera merespons dengan menjawab, ”Ya, bagus sekali! Silakan bertanya lagi.” Seorang siswa bertanya lagi apakah bilangan itu lebih dari 50. Guru memberi pujian dan terus memotivasi siswa untuk mengajukan beberapa pertanyaan lagi. Kurang dari 10 menit akhirnya siswa dapat menebak bilangan rahasia yang dimaksud, yaitu 75. Pertanyaan-pertanyaan seperti inilah sebenarnya yang diharapkan oleh guru dari siswa agar mereka sendiri dapat mengembangkan pola pikir untuk memecahkan suatu masalah. Selanjutnya, guru mengajak siswa kembali bermain tebak-tebakan bilangan rahasia. Masih ada siswa yang langsung menyebutkan bilangan tertentu.Tetapi ada pula siswa yang mengajukan pertanyaan apakah bilangan rahasia itu lebih besar atau lebih kecil dari bilangan tertentu. Karena memakan waktu yang lama, guru membantu siswa dengan menggambarkan garis bilangan di papan tulis, kemudian meminta siswa menuliskan bilangan-bilangan yang sudah disebutkan tadi. Berkat bantuan garis bilangan ini siswa dapat menebak bilangan rahasia yang dimaksud dengan lebih cepat dan terarah.
Cara lain yang dapat ditempuh adalah dengan membuat kartu-kartu bilangan yang digantungkan pada seutas tali. Mula-mula disiapkan kartu-kartu bilangan yang diberi gantungan (bisa menggunakan peniti atau penjepit kertas). Kemudian seutas tali digantungkan di papan tulis. Ketika seorang siswa menyebutkan sebuah bilangan, siswa itu diminta mengambil kartu bilangan yang disebutkannya dan menggantungkan kartu itu pada tali yang sudah direntangkan di papan tulis. Kartu-kartu bilangan tersebut digantungkan sesuai urutannya, yang lebih kecil di sebelah kiri. Dengan alat peraga sederhana ini siswa dapat langsung melihat posisi bilangan-bilangan sehingga mereka dapat membentuk sendiri pengetahuan tentang bilangan ”lebih dari” atau ”kurang dari” dan bilangan antara.
4.      Beberapa Contoh
Pada bagian ini disajikan beberapa contoh masalah kontekstual yang dapat digunakan dalam pembelajaran matematika realistik. Contoh-contoh ini menggunakan konteks Indonesia. Dalam prakteknya, Anda dapat menemukan sendiri konteks yang lebih sesuai dengan keadaan lokal dan kehidupan siswa di tempat Anda mengajar.
Ø  Contoh 1 (Belanja)
Contoh ini diadopsi dari Dolk (2006). Guru memperkenalkan konteks kepada siswa dengan bercerita bahwa dia akan mengajak beberapa tetangganya untuk makan malam di rumahnya dalam rangka ulang tahun anaknya. Dia akan memasak gulai ayam. (Anda dapat menggunakan masakan yang biasa dimasak orang di tempat tinggal Anda masing-masing). Pada saat berbelanja, dia mendapatkan bahwa harga ayam pada saat itu adalah Rp 15.000,- per kilogram. (Harga dapat disesuaikan dengan harga setempat yang lebih realistik). Untuk acara makan malam tersebut dia memerlukan tiga setengah kilogram daging ayam. Guru meminta siswa menghitung berapa besar uang yang diperlukan untuk membeli 3 ½ kilogram daging ayam tersebut. Siswa bekerja dalam kelompok dengan dua atau tiga anggota. Beberapa strategi yang mungkin ditempuh oleh siswa adalah sebagai berikut:
a.       Siswa langsung mengalikan ke bawah 15.000 dengan 3,5 seperti di bawah ini untuk memperoleh solusi Rp 52.500,-
b.      Siswa mengalikan terlebih dahulu 15000 dengan 3 untuk memperoleh 45000, lalu menjumlahkannya dengan ½ dikali 15000, yaitu 7500 dan memperoleh solusi sebesar Rp 52.500,-.
c.       Siswa membagi 15000 menjadi 10000 dan 5000, kemudian mengalikan masing-masing dengan 3 dan ½ lalu menjumlahkannya untuk mendapatkan solusi yang sama, yaitu Rp 52.500,
Ø  Contoh 2 (Mengukur dengan manik-manik)
Kemampuan untuk melakukan pengukuran dalam memecahkan masalah sehari-hari adalah salah satu kompetensi yang harus dimiliki siswa dalam pokok bahasan geometeri dan pengukuran. Salah satu hasil belajar yang diharapkan adalah membandingkan pengukuran panjang dan berat. Pada prinsipnya pengukuran adalah kegaitan membandingkan panjang, volume, atau berat sesuatu dengan satuan standar (baku) yang telah disepakati di seluruh dunia. Sebelum siswa diperkenalkan pada pengukuran dengan satu baku, seperti meter, kilogram, liter dan sebagainya, mereka terlebih dahulu diperkenalkan pada pengukuran dengan satuan tak baku. Rantai manik-manik dapat digunakan sebagai alat pengukur sederhana yang dapat dibuat sendiri oleh siswa. Dalam proses pembelajaran siswa diminta mengukur meja, kursi, tinggi badan, dan lain-lain dengan menggunakan rantai manik-manik yang sudah mereka buat. Setelah itu, siswa menyajikan hasil pengukurannya di depan kelas. Siswa lalu diarahkan untuk memikirkan masalah bagaimana kalau manik-manik yang digunakan sebagai pengukur tidak sama. Di sini siswa baru mulai diperkenalkan pada satuan baku
Ø  Contoh 3 (Kartu bilangan)

Contoh berikut adalah percobaan yang dilakukan oleh Dr. Yansen Marpaung, salah satu anggota tim Pendidikan Matematika Realistik Indonesia, di Timbulrejo Yogyakarta (Hadi, 2005). Pak Yansen mempersiapkan 20 kartu yang dapat ”didudukkan” dan terbuat dari karton, serta menuliskan sebuah bilangan pada setiap kartu mulai dari 1 hingga 20. Mula-mula Pak Yansen mengambil kartu bilangan 1 dan 20 serta meletakkan kedua kartu tersebut pada kedua ujung papan tulis sehingga terdapat jarak yang cukup besar di antaranya. Selanjutnya, Pak Yansen mengambil kartu bilangan 2 dan bertanya kepada siswa apakah ada yang mau meletakkan kartu itu di papan tulis. Seorang siswa maju dan meletakkan kartu bilangan 2 di antara kartu bilangan 1 dan 20 tepat di samping kartu bilangan 1. Setelah itu Pak Yansen mengambil kartu bilangan lain secara acak dan kembali bertanya apakah ada yang mau meletakkan kartu tersebut pada papan tulis. Demikian seterusnya hingga semua kartu telah diletakkan pada papan tulis dengan urutan yang benar. Strategi lain dikembangkan oleh Pak Yansen. Dia membalik kartu bilangan yang sudah tersusun pada papan tulis dan menyisakan beberapa pada posisi semula. Dalam konteks Indonesia, kue dadar atau pizza dapat diganti, misalnya, dengan kue serabi, dan apel dengan jeruk.